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Enhanced residual-free bubble method for
convection–di�usion problems
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SUMMARY

We analyse the performance of the enhanced residual-free bubble (RFBe) method for the solution of
elliptic convection-dominated convection–di�usion problems in 2-D, and compare the present method
with the standard residual-free bubble (RFB) method. The advantages of the RFBe method are two-fold:
it has better stability properties and it can be used to resolve boundary layers with high accuracy on
globally coarse meshes. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. THE ENHANCED RESIDUAL-FREE BUBBLE METHOD

The residual-free bubble method (RFB) was introduced by Brezzi and Russo [1] as a stable
parameter-free �nite element method for strongly convection-dominated convection–di�usion
boundary value problems; for the a priori error analysis of the method applied to general
second-order elliptic problems in divergence form, see Reference [2].
The RFB �nite element space includes all bubble functions on a given partition T of the

computational domain �, i.e. all functions with zero trace on the skeleton of the partition T.
The idea behind the RFBe method introduced in Reference [3] is to combine this property
with an enrichment of the �nite element space on the skeleton of the partition to obtain a
method that is more stable, and is able to resolve the boundary-layer behaviour, if required.
Given f∈L2(�) with �= (0; 1)2, we consider the following model problem:

Lu :=−��u+ a·∇u=f in �

u = 0 on @�
(1)
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where the two components of the convection �eld a are assumed to be continuously di�er-
entiable on � and the di�usion parameter � is a positive real number. Problem (1) admits a
unique weak solution u in V =H 1

0 (�).
Equation (1) models many physical phenomena. For example, we may think of u as rep-

resenting the concentration of a pollutant in a �uid that is moving at velocity a. In this case,
the �rst-order term in Equation (1) models the convection due to the �ow velocity �eld a,
while the second-order term represents the di�usion of u. Equation (1) is also a fundamental
model problem in the realm of computational �uid dynamics, its stable and accurate solu-
tion being a crucial step in the treatment of the incompressible Navier–Stokes equations; for,
despite its apparent simplicity, the convection–di�usion equation displays some of the typi-
cal di�culties associated with the numerical solution of �ow problems. In particular, in the
convection-dominated regime, the solution of (1) exhibits a normal boundary layer associated
with the portion of the boundary @�+ ⊂ @�, where a · n¿0, with n denoting the unit outward
normal vector to @�. It is in the vicinity of @�+ that we aim to obtain increased accuracy
over standard Galerkin and RFB �nite element methods.
The (linear and bilinear) RFB �nite element method consists of seeking an approximation

to the weak solution in V of problem (1) from the subspace of V given by

VRFB =Vh ⊕Bh
where

Vh = {vh ∈H 1
0 (�) : wh|T ∈P1(T ) (or wh|T ◦ FT ∈Q1(T̂ )) ∀T ∈T} (2)

Bh =
⊕
T∈T

H 1
0 (T ) (3)

As regards the RFBe method, this is de�ned by enlarging the approximation space VRFB, i.e.
by considering instead the augmented space (see Reference [4])

Va =Vh ⊕Bh ⊕Eh
where the space Eh of edge bubbles is de�ned as follows.
Owing to the richness of the bubble space Bh, it su�ces to �x the value of the functions

belonging to Eh on the skeleton � of the partition. To this end, we introduce the following
pieces of notation. We de�ne as boundary-layer region a neighbourhood of @�+ of width
�= � ln(1=�) in the direction orthogonal to the boundary. Then, we denote by 	bl the set of all
edges contained in � that intersect the boundary-layer region. Further, with �out we denote
the union of all elements that do not intersect the boundary-layer region.
We de�ne an edge bubble only in association with edges that belong to 	bl. Given 	∈	bl,

we de�ne the restriction e	 of the edge bubble e∈Eh on 	 as the solution of the one-
dimensional boundary value problem

L	e	 = 1 in 	

e	 = 0 on @	
(4)

Here, we de�ne the restriction of the di�erential operator L onto 	 as L	e	 = − �e′′	 + a	e′	,
where a	 is the projection of a along 	 and (·)′ is the derivative along the edge. For any pair
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of adjacent elements T and T ′, which share 	 as a common edge, we then de�ne e on T as
the solution of Le=0 on T subject to e|	 = e	 and e|@T\	 =0, analogously, for T ′. Finally,
we extend the function e thus obtained by 0 outside T ∪ T ′ and place the resulting function
into Eh. In particular, each element of Eh vanishes on �out. This completely de�nes the space
of edge bubbles Eh and hence the RFBe method for the solution of (1). For similar ideas of
�nite element spaces incorporating the �ow conditions, see Reference [5 pp. 273–278], and
the more recently developed FCBI method [6].
The a priori analysis of the method in the pre-asymptotic regime is carried out in

Reference [3]. The error bounds obtained for the RFB and RFBe methods are displayed
in the following theorem.

Theorem 1.1
Let u∈H 1

0 (�) be the solution of the boundary value problem (1) assuming that �∈R+,
f∈W 2

∞(�) and a=(a1; a2)∈ [C1(�)]2, with div a60 and a1; a2¿ca¿0. Moreover, let T be
a quasi-uniform axiparallel rectangular mesh. Then, as long as h¿C� and �61=e, the RFB
solution uRFB ∈VRFB =Vh ⊕Bh satis�es

�1=2|u− uRFB|1;� + h−1=2‖a·∇(u− uRFB)‖−1;�6C1 max(�1=2h−1=2; �1=4) + C2 (5)

Let ua ∈Va =Vh ⊕Bh ⊕Eh be the RFBe solution. Then, under the same hypotheses as above,
�1=2|u− ua|1;� + h−1=2‖a·∇(u− ua)‖−1;�6C1 max(�1=2h−1=2; �1=4) + C3h (6)

The constants C1, C2 and C3 are independent of h and �, but may depend on a.

We emphasize once again that the error bounds (5) and (6) are valid only when h¿C� (for
a quanti�cation of the constant C see, again, Reference [3]). This is the regime of interest,
since only when the mesh does not resolve the normal layers typical of convection-dominated
di�usion problems is there a need for using a stabilized �nite element method. Below, the
a priori error bounds are assessed computationally by considering a problem with a known
exact solution.

2. EXAMPLES

Example 1
We consider the boundary value problem

−��u+ ux + uy =f in �= (0; 1)2

u=0 on @�
(7)

with f de�ned in such a way that the exact solution is given by

u(x; y)=2(sin x)(1− e−(1−x)=�)y2(1− e−(1−y)=�)
To con�rm the a priori bounds on the energy-norm error, we solve this model problem on a
sequence of uniform meshes using both the RFB and the RFBe methods for �=10−2.
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In order to implement the method, this has to be fully discretized as described in
Reference [3] (see also Reference [7]). In particular, a �nite number of bubble functions
belonging to Bh has to be computed. The edge bubbles belonging to Eh have also to be
computed by solving on the appropriate edge problem (4) and using the obtained function as
boundary value for the computation of the corresponding edge bubble. As in Reference [8],
we use �nite elements for such elemental computations, on subgrids of Shishkin type; the
details of this are described below.
Given the 1-D boundary value problem

−�v′′h + av′h =f in Ih=(0; h)

vh(0) = 0; vh(h)=0

we scale it back to the unit interval, to obtain, with �∗= �=h:

−�∗v′′ + av′ = hf in I =(0; 1)

v(0) = 0; v(1)=0
(8)

Next, we perform a �nite element approximation of v on a Shishkin mesh on I : this is a
piecewise uniform mesh on I consisting of N subdivisions (with N even), de�ned as follows.
Given the turning point �∗= cs(�∗=ca) lnN , where cs is a constant independent of �∗ and N ,
the mesh is taken to be uniform with N=2 subdivisions on each of the subintervals [0; 1− �∗]
and [1 − �∗; 1]. For the continuous piecewise linear �nite element approximation v I of the
solution v of (8), the interpolation error over such a mesh satis�es the error bound

�∗|v− v I |21; I + ‖v− v I‖20; I6CN−2 ln2 N

with the constant C independent of � and N (see Reference [5]).
Scaling back to the interval Ih we obtain a Shishkin mesh with turning point �= cs(�=ca) lnN

and the scaled error bound

�|v− v I |21; Ih + h−1‖v− v I‖20; Ih6CN−2 ln2 N

Shishkin meshes on rectangles are constructed by taking a tensor-product of 1-D meshes,
and then similar approximation results apply.
We name RFBe(N ) the fully discrete RFBe method, where N is the subgrid mesh parameter.

In the present example, the subgrid is the N ×N axiparallel tensor-product Shishkin mesh with
turning point �= cs�=ca lnN and the value of the Shishkin parameter cs = 1.
The convergence history in terms of the mesh parameter h is shown in the log–log plots

of Figure 1; see the left-hand plots for the �1=2-weighted H 1-seminorm (in short, H 1
� ) errors,

and those on the right for the error in the L2-norm. To study the stabilization properties of
the new method, we also plot the error in the norms restricted to the outside region �out (see
the plots below in Figure 1), which are de�ned by

|w|H 1�; out =
(

�
|�out|

)1=2
|w|H 1(�); ‖w‖L2out =

(
1

|�out|
)1=2

‖w‖L2(�)

The error reduction rates predicted by the a priori analysis are con�rmed by the top-left plot
in Figure 1: indeed, as h decreases the RFBe(64) solution initially approaches the reference
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Figure 1. Example 1.
√
�-weighted energy norm and L2 norm error as a function of h; �=10−2.

solution with rate 1. As we keep decreasing h, the slope of the error curve changes sign until
the error curve joins the corresponding error curve for the RFB method.
The RFBe(4) method exhibits a di�erent behaviour: since the error is concentrated in the

boundary-layer region, the poor evaluation of the edge bubbles on the coarse 4× 4 subgrid
dominates the overall computational error. Indeed, by solving repeatedly on a �xed uniform
8× 8 mesh on �, but using di�erent mesh sizes N for the subgrid, we observe the characteristic
N−1 logN convergence rate on Shishkin meshes described above, see Figure 2.
Finally, the bottom plots in Figure 1, reporting the error in �out, show that the new method

RFBe has better stability properties than RFB. Notice that, this time, there is not a signi�cant
di�erence between RFBe(4) and RFBe(64). We conclude that the stabilization e�ect due
to the introduction of the edge bubbles is quite robust with respect to the accuracy of the
computation of the edge bubbles.

Example 2
To exemplify the stabilization e�ect of the edge bubbles we solve problem (7), this time
with f=0 and boundary conditions u=1 for x=0 or y=0, and a homogeneous Dirichlet
boundary condition elsewhere. As we can see by comparing the solution pro�les in Figure 3
(here only the bilinear part of the solution (belonging to Vh) is plotted), the edge bubbles
have the e�ect of reducing the over- and under-shoots typical of RFB (and of most stabilized
�nite element methods) near the boundary layer.
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Figure 2. Example 1.
√
�-weighted energy-norm error on a uniform 8× 8 mesh as a function of the
subgrid discretization parameter N with �=10−2.
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Figure 3. Example 2. Solution pro�les (�=10−2): RFBe(4) (left) and RFB (right).

3. CONCLUSIONS

We have shown how a small number of edge bubbles can be introduced to improve the reso-
lution of boundary layers of the RFB method in the context of elliptic convection-dominated
convection–di�usion problems. The resulting scheme has better accuracy and stability prop-
erties than RFB in the regime h¿�. Although we modi�ed the RFB scheme locally (i.e. in
a neighbourhood of the boundary layer), we obtained increased resolution globally, indicat-
ing that the local introduction of the edge bubbles has a global stabilizing e�ect. Moreover,
the method is sensitive to the accuracy of the evaluation of the edge bubbles only inas-
much as accuracy within the layer is concerned. Hence, the method can be seen either as
a way of performing local re�nement near the layer, or as a computationally competitive
enhancement of the classical RFB method. The RFBe method can be generalized to the so-
lution of convection–di�usion equations with a symmetric tensor di�usion coe�cient, see
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Reference [3]. The adaptive detection of layers where edge bubbles are required is another
area of our research. Our results in this direction will be reported elsewhere.
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